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Abstract

Most studies of Bayesian updating use experimental data. I use a novel, real-world data source–the

Associated Press (AP) college football poll, a weekly subjective ranking of the top 25 teams–to

test the validity of Bayes’ rule as a descriptive model. I argue that the poll voters’ individual

final rankings represent their ‘true’ rankings, for a given season, and use historical score data and

final rank frequencies to estimate benchmark Bayesian posterior rankings. I compare estimated

Bayesian to observed ranking changes and find evidence of both Bayesian updating and systematic

over and underreaction to new information. Overreaction is positively associated with the salience

of new information, and lack of salience of strong priors. The evidence that voters overreact to

losses by highly ranked teams is especially strong. The finding that salience drives both over and

underreaction allows well known heuristics that appear to be in conflict, like representativeness and

anchoring, to be reconciled. The results are confirmed using multiple methods and the aggregate

polls.
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1 Introduction

Most studies of Bayesian updating use experimental data.1 While this research has led to tremendous

insight into human behavior, it is inherently subject to a variety of criticisms. A common one is that

in experimental settings agents lack expertise and the ability to learn. Many experiments attempt

to address this concern by giving subjects opportunities to practice. Still, the issue can never be

completely mitigated. The intuition real-world agents gain from years of experience is not replicable

in the lab. Other criticisms of experimental results include self-selection of agents, small stakes, self-

consciousness of agents, agents not having the ability to confer with others2 and agents not having

sufficient time to make optimal decisions.3

A perhaps more subtle weakness of experimental research is that it may be relatively unlikely to

yield findings explaining a range of behavior. This is because experiments are usually set up to test

hypotheses, formed prior to the start of the experiment, regarding particular behavioral anomalies.

Hypotheses of non-Bayesian belief updating usually fall in either the category of overreaction or under-

reaction to new information. Overreaction occurs when individuals adjust their beliefs excessively in

response to a signal, acting as if they put too much weight on the new information and/or insufficient

weight on the prior. When found in experiments it has been ascribed to the representativeness and

availability heuristics, alarmism and the base-rate fallacy. People underreact when they make the

opposite mistake and revise their beliefs an insufficient amount; this has been attributed to, e.g., over-

confidence, the anchoring and confirmatory biases.4 Because most experimental studies concentrate

on showing that one or the other bias exists, they are usually incapable of answering the question of

which bias occurs when, and how the biases may be reconciled.

This paper contributes to this research area by using a novel, real-world data source to test Bayesian
1See, e.g., Tversky and Kahneman (1974), Grether (1980), Rabin (1998) and Delavande (2008). DellaVigna (2007)

reviews field evidence of behavioral anomalies, and does not mention any studies that focus explicitly on belief updating.
2Charness, Karni, and Levin (2007) find strong evidence of the significance of this factor.
3Levitt and List (2007) provide an interesting discussion of the generalizability of experimental results given some of

these issues. Viscusi (1985), for example, discusses evidence that people are more Bayesian in the real world than they
appear in some lab experiments. And, the evidence from the lab is mixed; El-Gamal and Grether (1995) find that Bayes’
rule is the predominant explanation of their subjects’ behavior and Holt and Smith (2007) report similar findings.

4For a more thorough discussion of these biases see the references in footnote 1. There is a third, distinct type
of non-Bayesian behavior, in which belief revisions take the incorrect sign, rather than simply the wrong magnitude.
Overreaction and underreaction, in which revisions have the correct sign but incorrect magnitude, are the focus of this
paper.
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updating: the Associated Press (AP) college football poll.5 The AP college football poll is a weekly

subjective ranking of the top teams by dozens of journalists who have covered college football for a

substantial period of time. Although the data are not economic, they are unique in that they are

measures of the evolution of experts’ beliefs over time in response to relatively few clearly observed

signals, taken from a non-experimental setting. Moreover, due to the richness of the data I observe

both over and underreaction to new information by the poll voters, which provides insight into the

underlying causes of the different types of errors.

I discuss the data sources in detail in the following Section (2). In Section 3, I discuss my analytical

framework and estimation method. I argue that the final, or postseason, individual voter rankings

represent the ‘true’ rankings for each voter-season, and that these true rankings do not change from

week to week (for each voter-season), as the final rankings incorporate all relevant information about

team qualities and performances for each season. In other words, each voter’s pre and mid-season top

25’s can be interpreted as predictions of his or her postseason top 25 for that season. This allows use

of historical score distributions and empirical final rank frequencies to estimate benchmark Bayesian

updated (posterior) rankings. My primary analysis, discussed in Section 4, is based on the first seven

weeks of the 2006 season’s 64 voters; a total of 11,200 possible prior ranks, each with a corresponding

posterior. I first test for differences between the estimated Bayesian posterior rankings’ (henceforth

I refer to these as the ‘estimates’), and the actual, or observed, posterior rankings’ (henceforth the

‘actuals’) distances from truth (the actual final rankings). This tests the accuracy of the estimates.

The results indicate that the estimates are more accurate: I reject at the 5% level the null hypothesis

that the estimates and actuals are equally accurate for 37.5% of voters in favor of the estimates being

more accurate. The null cannot be rejected in favor of the actuals being more accurate for any of the

voters. This is taken as evidence of the validity of the estimates. I then construct a variable intended

to measure overreaction, defined as excess rank improvement after wins and excess rank decline after

losses. The measure of overreaction is statistically affected, both positively and negatively, by several
5Several other academic studies have used the AP college football poll as a data source, including

Lebovic and Sigelman (2001), Goff (1996) and Logan (2007). One major distinction between this work and these studies
is that they all rely solely on the aggregate polls, while I use both individual voter and aggregate data. Moreover, no
other paper uses the poll to explicitly analyze Bayesian updating.
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factors that should have no effect on it under the null hypothesis of Bayesian updating. This implies

that voters do in fact systematically underreact in some situations, and overreact in others. The factor

that most parsimoniously explains the phenomena is salience: the tendency to overreact increases with

the salience, or notability, of the signal and/or prior.

I find that the voters do not appreciate relatively non-salient information, such as home-field ad-

vantage. This causes them to over (under) react to home (away) wins, and under (over) react to home

losses. The voters also do not respond sufficiently to margin of victory over weak opponents, but do

respond rationally to margin of victory of wins over ranked opponents, which are more salient signals.

This rather sophisticated behavior reflects the voters’ expertise and knowledge of the underlying ran-

dom processes, enabling them to sometimes be Bayesian. There are other subtleties in the information

structure that the voters do not appreciate, however. Perhaps surprisingly, the strongest differences

between Bayesian and observed behavior seem to result from non-salient distinctions in the precision

of priors. I find that the precision of prior rank is much greater for highly ranked teams.6 The greater

precision implies that responses to losses by top-ranked teams should be relatively small: the mean

estimated Bayesian rank decline after losses by top 10 teams is 1.3 spots less than the mean estimated

rank decline after losses by top 11-25 teams (estimated rank changes of -3.4 and -4.7 for teams ranked

1-10 and 11-25, respectively; this in spite of the fact that top 10 teams have farther to potentially fall).

The average actual changes are -6.7 and -4.0. That is, voters reduce top 10 team ranks by 3.3 (= -3.4 -

(-6.7)) spots after losses more than they ‘should’. Because the voters do not appreciate the non-salient

distinctions in strength of prior they overreact to losses by high-ranked teams. Furthermore, the voters

in general under-react to signals for low-ranked teams.

If only over or underreaction were observed in the data it might have been attributed to one of

the biases or heuristics noted above; since both are observed a more general explanation is required.

The positive association between salience of signal and/or prior and overreaction is a more general

explanation of behavioral belief updating than many theories discussed in previous literature.

In Section 5 I describe two robustness checks. In the first, I directly compare the actuals to the
6Nutting (2006) documents this phenomenon in detail, including a reference to a very apt quote made in 1989 by

UPI sports editor Fred McMane: “I dont think there are 25 good teams in the country. I think you generally see five
good teams, 10 who are fairly good, and after that, who knows?”.
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teams’ final ranks. In this case differences can be interpreted as forecast errors rather than non-Bayesian

behavior per se. In the second robustness check, I assume the voters are Bayesian and estimate the

priors that rationalize the observed behavior. I find results supporting the initial conclusions using

both of these methods.

Section 6 discusses an analysis of the aggregate polls. These data are less appealing because factors

that affect individual behavior cannot be accounted for. Still, they are extremely valuable as they

allow examination of a wider range of ranks and seasons, since there is greater availability of the

aggregate data. The findings from this section support the initial conclusions as well. On average,

however, the actual aggregate ranks outperform the Bayesian estimates by the accuracy metric used.

Thus, the aggregation of insights and information that voters have that are not taken into account in

this analysis outweigh the non-Bayesian mistakes they make. This is partly due to the magnitude of

the mistakes not being large, which corroborates the idea that agents make more rational decisions

outside the laboratory.

2 The Data

The AP college football poll is a field data source uniquely well suited for analyzing belief updating.

During the season, the poll is conducted exactly once per week and teams play exactly one or zero

games per week. Consequently, the voters in the poll observe at most one major signal about each

team per week. (Admittedly the voters obtain other information about each team besides game scores,

but this information has a relatively small impact on the rankings, especially on a week-to-week basis.)

Moreover, the signal probabilities–the distributions of the scores–are, or should be, common knowledge,

since the voters have all observed years of scores. Based on their extensive experience the voters know

how likely different scores are for teams of different ranks.

These two features–the single signal between observations of the voters’ rankings, and common

knowledge of the signal distributions–are what distinguish these data from most economic data, and

are why I use them for this study. In most economic situations there are many important signals,

which arrive erratically, that may affect beliefs. It is difficult to tell which individuals observe which
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signals, and even more difficult to say anything about the (subjective) likelihoods of the signals. For

example, take the individual’s lifetime consumption-savings problem, which depends on beliefs about

future income and other factors. Even if we observe an individual’s history of income and consumption

we can really say very little about the signals she has received about future income. Thus we cannot

say, based on observed data, whether or not the individual uses Bayes’ rule to update beliefs upon

receipt of new information.

While all of the data are technically publicly available, they are not all easily accessible. The current

week’s aggregate AP poll is ubiquitous in sports publications throughout the college football season.

The first poll is taken before the season starts in late August and the final poll occurs after the season

ends in early January. The poll is currently voted on by 65 leading college football journalists from

throughout the country and different forms of media; the number of voters has varied over the years.

Each voter submits a ranking of the top 25 teams, and the aggregate ranking is determined by assign-

ing teams 25 points for each first place vote, 24 for second, etc., and summing points by team (a Borda

ranking). The poll began in 1934 but the number of teams ranked by voters has changed over time,

and has been 25 since 1989. Historically, the poll has played a part in determining the national cham-

pionship, but this role ended in 2005. The individual ballots of the AP poll voters are not confidential.

The AP makes the current week’s ballots available on its website, but the historical ones are not

published anywhere to my knowledge. I obtained historical aggregate AP polls and ‘Others Receiving

Votes’ (teams receiving some votes whose point totals were not in the top 25) from appollarchive.com

and The [Baltimore] Sun. I obtained the individual ballots for the 2006 season from Paul Montella and

Ralph Russo of the Associated Press. Historical score data is from “James Howell’s College Football

Scores” (URL as of June 12, 2008: http://homepages.cae.wisc.edu/ dwilson/rsfc/history/howell/) and

http://www.knology.net/ jashburn/football/archive/.

The data do have several weaknesses. First, the voters do not have direct incentives relating to

the quality of their rankings. This is not too concerning, as the voters’ prestige, and thus indirectly

career concerns, depend on their rankings. For example, a voter was removed from the 2006 poll after

mistaking a win for a loss,7 and another voter is famous for being the only one to rank the eventual
7http://sports.espn.go.com/ncf/news/story?id=2663882
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championship winner number one early in, and consistently throughout, the 1992 season. In addition,

discussions with voters indicate that they put substantial effort into producing their best possible

rankings.

There are two more significant weaknesses. The first is that the voters only rank 25 out of more

than 100 teams. The second is that the data only include rankings, rather than a distribution of beliefs

regarding a specific variable. In fact, what the voters are ranking is never formally defined. Likely,

there are different criteria used by different voters. I discuss both of these weaknesses at length in the

following section.

3 Framework and Estimation

3.1 Defining Truth

The key element to constructing the estimated Bayesian posterior rankings (the estimates) is defining

truth–the unobserved state of the world that the rankings represent beliefs about. The rankings are

never formally defined so this task is not trivial. I define truth, or more accurately, approximate

it, as the individual voters’ final rankings, for each season. Thus each voter’s pre- and midseason

rankings can be interpreted as predictions of his/her final rankings for that season. The final rankings

approximate the true rankings because they incorporate all potentially available information about

“quality of season-long performance” and subjectivity of beliefs about the various teams. The final

rankings also incorporate all potentially available information related to “quality”. Consequently, if

quality is constant throughout the season, each voter’s final rankings are the best estimates of the true

rankings (for that voter and season), at any point throughout the season.8,9

This truth definition does become problematic if voters rank teams on current quality and quality

changes throughout the season. Then, for example, if voters’ first week rankings were observed to
8I intentionally avoid specific definitions for the terms season-long performance and quality so as not to impose

unnecessary structure. Vaguely, performance refers to the realization of game results, and quality refers to the unobserved
team-specific distribution of game results.

9The other variable that might appear to plausibly affect rankings is year-to-date (YTD) performance. This variable
cannot be what the rankings are based on, however, due to the existence of a preseason poll. Since there is no YTD
performance at that point, and a poll exists, the poll cannot be an assessment of performance that has been observed.
It follows that mid-season polls can also not be based purely on YTD performance. The data bears this out; further
information is available from the author upon request.
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be very different from their final rankings it would appear that their first week beliefs are very far

from “truth”, when it would really be just that truth is changing over time. I examine this possibility

by testing the hypothesis that average score differences for teams of different final ranks are constant

throughout the season.10 If voters rank teams on current quality, and quality changes, then teams

highly ranked in the final poll would have relatively better performances in the later part of the season,

on average. This is because teams highly ranked in the final poll would improve on average throughout

the year, and teams ranked poorly in the final poll worsen. Please see the Appendix for a theoretical

illustration of this phenomenon.

Table 1 presents empirical evidence that the hypothesis cannot be rejected. This indicates that

rankings are based primarily on season-long performance, or that team qualities do not change signifi-

cantly over time, either due to the relatively short season (teams play fewer than 15 games) or perhaps

the lack of a hot hand at the team level (Camerer (1989)). Either way the voters’ final rankings are

valid estimators of their true rankings. Table 1 shows that while home teams of final rank 1-12 do beat

teams of final rank 13-25 by a greater margin in the second half of the season, home teams of final rank

13-25 also perform better in later months versus superior teams of rank 1-12. These data essentially

nullify each other. Neither of the other p-values (for games between ranked teams and unranked teams

that were ranked in the final poll in one of previous two seasons) are compelling either. There is little

reason to lose confidence in the null hypothesis, that score differences are not correlated over time.

I note that truth as defined in this paper is endogenous: it is determined by the voters. Conse-

quently, their belief updating from the second-to-last to last poll is tautologically Bayesian; third-to-last

is close to tautologically Bayesian, etc. This endogeneity actually improves the size of the tests; it

reduces the likelihood of rejecting the voters being Bayesian when true (a desirable property). Unfor-

tunately, it also reduces the tests’ power. To obtain greater statistical power the sample needs to be

restricted to the early part of the season. Using early season data also reduces the chance of voters

committing the hot-hand fallacy, or falsely inferring trend in team quality changes.11 On the other
10I use aggregate ranks for these tests due to lack of historical individual rank data; this should not confound the

results.
11If voters believed team qualities were changing, they would appear to overreact but would be making mistakes

qualitatively distinct from basic misuse of Bayes’ rule.
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hand, if the sample is restricted to too small a portion of the season, the tests also lose power. I thus

limit the analysis simply to the first half (seven weeks) of the season.

One other issue arising from defining truth as the voters’ final rankings is that the voters are

assumed to have no one to please but themselves; their objective functions do not depend in any way

on others’ perceptions of the accuracy of their rankings.12 This assumption is not accurate if voters

are inhibited from expressing their views for fear of embarrassment, or influenced by the beliefs of

others for any other non-informational reason. An alternative definition of truth that accounts for

these possible issues is the aggregate final rankings. By this definition the true rankings, by team

and season, are constant across voters. I conduct the analysis (construction of estimates, and tests of

differences between estimates and actuals) using this alternative truth definition, as well as the original

definition (individual final rankings), and find that the differences are minimal. The results obtained

using the original definition are the preferred estimates, however, and are used whenever the truth

definition is not specified.13

3.2 Formal Framework

With this discussion in mind, I now specify the voters’ objective functions and Bayesian updating

process. Let rv
i denote the true rank of team i for voter v, i ∈ {1, ..., N}, ri ∈ {1, ..., 25, 26+} and

v ∈ {1, ..., V }, in which N is the number of teams that may be ranked, V is the number of voters and

if ri = 26+ the team is unranked. v is suppressed in the following as it is unnecessary. Note that i

is a team identifier, or index, and has nothing to do with the team’s rank. For example, r1, the true

rank of team indexed 1, may be 10, 20, etc.

Each voter’s objective function in week t is to minimize a function of distance between current and

true ranks.14 I make the simple assumption that Et(ri) > Et(rj) → ∼
r i,t >

∼
r j,t; in which

∼
r i,t is the

12I do test for, and find significant, the effects of differences between individual and aggregate ranks on individual
rank changes. I believe this is likely to due to learning; voters know that other voters have superior information about
some teams, and they rightly influence one another through their rankings. I discuss this later in the paper.

13The data indicate that indeed the voters do not attempt to rank teams as closely to the aggregate ranks as possible.
For example, in the first poll of 2006 Ohio State received the majority of first places votes: 35 out of 65. In the second
poll, after a strong opening win, it received 39 first place votes. If voters were simply trying to match the aggregate
rankings, more than four of them would have switched their first place vote. Moreover, using the aggregate final rankings
as the preferred truth definition introduces strategic interaction issues, which could complicate the analysis considerably.

14I make the highly defensible assumption that voters do not strategically manipulate their final rankings so as to
make their earlier rankings appear to be more accurate.
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actual rank of team i in week t. That is, teams are ranked in order of expected rank.

Let sij be a random variable that is the score difference for the game in which team i plays team

j, or points scored by team i minus points scored by j (if sij > 0, i wins). This variable has no time

subscript because teams almost never play each other more than once.

Let g(sij |ri, rj) be the conditional probability that the game between teams with true ranks ri and

rj results in score sij .

Let fi,t(ri) be the (subjective) probability that team i has true rank ri in week t. (r is indexed by

i for clarity in the Bayesian updating formula below.)

After team i plays j, sij is observed and voters can update their beliefs to fi,t+1(r|sij), fj,t+1(r|sij).

I note that technically if beliefs about team i’s rank change, beliefs about at least one other team’s

rank also must change. That is, ∀k 6= i, j, the voters update fk,t+1(r|sij). However, since these effects

are minimal I abstract from them. Similarly, I assume fi,t(ri|rj) = fi,t(ri),∀j 6= i.

Voters know g(sij |ri, rj) from their observation of years of historical scores and estimates of the

true rankings for the respective seasons. They can thus use a fairly straightforward application of

Bayes’ rule to update beliefs. For example, suppose teams indexed 10 and 11 play a game and we are

interested in the posterior probability that team 10 has true rank 1: f10,t+1(1|s10,11). Using Bayes’

rule, this is equal to the probability of s10,11 given r10 = 1, g(s10,11|r10 = 1), times the prior that team

10 has true rank 1, f10,t(1), divided by the unconditional score probability, g(s10,11). The first g() term

depends on beliefs about the true rank of team 11, and the second depends on beliefs about the true

ranks of both teams 10 and 11, specifically g(s10,11) =
∑

r10
[
∑

r11
g(s10,11|r10, r11)f11,t(r11)] f10,t(r10)).

In general, the formula for belief updating is:

fi,t+1(ri|sij) =
g(sij |ri)fi,t(ri)

g(sij)
=

[
∑
rj

g(sij |ri, rj)fj,t(rj)] fi,t(ri)
∑
ri

[
∑
rj

g(sij |ri, rj)fj,t(rj)] fi,t(ri)
. (1)

Note that g(sij |ri) is calculated by averaging over rj , the true rank of team j, since this is unob-

served, and likewise for g(sij). The econometrician can also then estimate posterior beliefs if the prior

and signal distributions are estimable, which is the subject of the next subsection. If we can then

translate these estimated posterior beliefs into rankings we obtain the estimated posteriors.
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3.3 Estimation Method

Given this framework, I need estimators of both of the components of 1, the f ’s and g’s, in order

to construct the estimates. Please see the Appendix for a discussion of how these distributions are

obtained. To summarize, I use smoothed empirical frequencies to estimate both sets of distributions,

but am forced to make several assumptions due to data limitations. First, I categorize the support for

both the f ’s and g’s; second, I condition on aggregate final rank for the g’s; third, I assume all voters

have the same f for each prior rank; last, I use the 2006 data to estimate the f ’s (the same data that

the analysis is conducted on). The first and third are approximations and should not introduce any

systematic bias. The second may cause the estimated g’s to be too ‘tight’; if so, this would cause the

signals to appear too informative, and the estimates to move too far from the priors. This would bias

the results towards findings of underreaction. Of course, using the aggregate final ranks yields the

correct g’s if aggregate final rank is indeed the correct truth definition. This issue will be kept in mind

and discussed as I proceed. The fourth assumptions might cause the estimates to appear overly accurate

and affect findings of overreaction (in an unknown way, ex ante) if the priors vary year to year and the

voters have uncertainty about how this occurs. However, the 2006 aggregate priors appear similar to

the 1990-2005 priors;15 furthermore, estimating priors with current-year data is actually preferable to

using historical data if the priors vary year-to-year and the voters are informed about this variation.

This is because in this case current-year estimated priors would incorporate information about the

relative strength of prior beliefs that would not be reflected in historical-data estimated priors. Taking

account of both of these considerations, I do not believe using the current-year data for this purpose

is problematic.

The other issue that needs to be addressed before constructing the estimates is the fact that the

voters only rank 25 out of approximately 120 teams eligible to be ranked (the number of Division

I-A teams). Since most games are between ranked and unranked teams, some objective method of

distinguishing among unranked teams is needed. If I treated wins over the best and worst unranked

teams equally the estimates would be badly flawed. Fortunately, there are a number of publicly
15Statistics not reported for brevity but available from the author on request.
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observable variables that can be used for this purpose. I use three: 1) currently ranked by at least

one other voter, 2) ranked by at least one voter in final AP poll in one of previous two seasons, and 3)

ranked by at least one voter in final AP poll in one of previous three to five seasons (and unranked in

previous two seasons). I also distinguish by YTD number of losses (0 or >0 in weeks 1-3; 1 or >1 in

weeks 4+) for teams not currently receiving votes from another voter. This expands the cardinality

of the set of elements ri,t is in to 32, in which ri,t = 26 means team i receives at least one vote from

others in week t, ri,t = 27 means team i does not receive any votes but was ranked in one of two

previous seasons and has zero losses, etc. I estimate priors for teams in each of these unranked groups

as the raw frequencies of finishing in the various rank categories (I do not smooth them because there

is no a priori criterion for smoothing as above for top 25 teams, since specific beliefs on the teams are

not observed. But, generally teams receiving votes from others, and teams ranked in recent polls fare

better than others.).

This method of distinguishing among unranked teams is not sufficient for accurately estimating

posterior beliefs for unranked teams. Consequently, I only estimate posterior beliefs for teams that

are currently ranked. I do not attempt to estimate which teams should enter and exit the top 25.

This forces a need to account for the fact that several teams do indeed drop from the rankings for

most voters in most weeks. I do this by restricting the maximum (worst) estimated posterior rank

to one greater than the number of teams that are observed to stay in the poll, by voter-week. I also

re-rank actual posterior ranks among teams that were in the prior poll, and assign the same maximum

rank to teams that drop from the rankings. This allows comparisons between estimated and actual

posteriors to be apples-to-apples, unconfounded by teams entering the polls at various rank levels. In

other words, it allows the estimates to potentially exactly match the actuals.16

16For example, suppose only 22 of 25 teams in voter 1’s week 1 ballot are ranked in week 2. Suppose the teams ranked
19-21 in week 1 dropped out and were replaced by new teams (teams unranked in week 1), so the ranks of teams ranked
1-18 and 22-25 did not change. Since I know relatively little about the new teams in the poll (since they were unranked
before) I ignore them and adjust the actual week 2 posteriors. I assign ranks 19-22 to teams actually ranked 22-25, and
23 to the teams that dropped out. For the estimates, I assign rank 23 to all teams with estimated rank 23 or higher.
Hence, the estimated rankings can potentially be exactly the same as the actuals.
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4 Individual Voter Analysis

4.1 Validity of the Estimates

Before proceeding to the tests of Bayesian updating, it is worthwhile to assess the validity of the

estimates. I do this by examining the distances between the estimates and true rankings. I compare

these to the analogous distances for the actuals, actual priors and flat priors. To be clear, the actuals

are the actual, or observed, posteriors; the actual priors are the voters’ rankings prior to the game

results, and flat priors are equal rankings for all teams (the average rank). For sufficiently large samples

the Bayesian posteriors will on average be closer, by any reasonable measure, to truth than posterior

rankings obtained using any other method. Thus, if the estimates and actuals are both approximately

Bayesian they will be equally close in distance to the true rankings. If one is less Bayesian its distance

from truth will be greater. If either the estimates or actuals is sufficiently flawed then it will be no

closer to truth than the actual priors. If the signal is uninformative neither the estimates nor actuals

will be closer to truth than the actual priors. And, if the actual priors are meaningless they will be no

closer to truth than the flat priors.

I measure distance from truth by average absolute deviation, by voter: 1
n Σ

i,t
|r̂v

i,t+1 − rv
i |; n is the

number of observations per voter. I adjust the true rankings as discussed above to account for number

of teams, per week and voter, not being in the final poll. Table 3 presents summary statistics for these

deviations averaged over all voters. The estimates appear superior to the actuals, and the signal and

actual priors appear informative, as they are both lower than the flat prior average deviation. Because

observations are correlated across voters by game, I formally test these differences separately by voter.

I conduct paired t-tests by individual voter of the difference between the mean absolute deviation from

truth for estimated and actual posteriors. The null hypothesis is that the means are the same, and the

alternative is that the average deviation for the estimates is smaller. p-values for 58 of the 64 voters

are less than 50% (mean estimate deviation less than mean actual deviation). The average p-value

is 16.7%, with a min of 0.04% and a max of 73.7%. There were p-values below 5% for 37.5% of the

voters. Given that the actuals incorporate information and personal biases not accounted for by the
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estimates, this is strong evidence of the validity of the benchmarks.

4.2 Testing Bayesian Updating

Although the statistics reported above imply that many individual voters are not fully Bayesian, the

numbers do not indicate whether or not they have systematic biases, and if so, when the biases come

about. In fact, even the voters whose actual posteriors were not significantly less accurate than the

estimates very well may not be Bayesian all, or even most, of the time. The two main types of non-

Bayesian errors I am interested in testing for are systematic over and underreaction. As mentioned

in the introduction there are many well known biases that fall into these two categories. I define

overreaction formally (in the context of football rankings) momentarily, but first discuss summary

statistics for the estimated and actual rank changes. These are presented in Table 4, categorized by

the basic categories of signal type–win and loss (for simplicity I ignore byes)–and broken out by prior

rank categories.

On average the estimated responses to wins are slightly larger than the actuals; since both are

positive this is evidence of slight underreaction by the voters. The estimated and actual responses

to losses are also similar on average, now indicating slight overreaction, since the magnitude of the

actuals is larger. These similar averages, however, mask stark heterogeneity over the various rank

groups. In particular, the estimated and actual responses to wins are very different for teams ranked

11-15 and 21-25. The actuals are higher than the estimates for the former group, and lower for the

latter, implying that the voters actually overreact to wins by teams ranked 11-15. The responses to

losses are substantially different for all rank groups except 21-25. There is apparent strong overreaction

to losses for top 10 teams, and moderate underreaction for teams ranked 11-20.

These summary statistics confirm that voters appear to both over and underreact to new informa-

tion, and to different degrees depending on the context. This apparently contradictory pattern has been

recognized in the literature before, but the formal analysis of it has been limited. Barberis and Thaler

(2002), without citing any studies, attempt to provide an explanation saying, “If a data sample (signal)

is representative of an underlying model, then people overweight the data. However, if the data is not
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representative of any salient model, people react too little to the data.” Amir and Ganzach (1998)

find some supporting evidence for this idea, but focus on saliency of the ‘anchor’ (prior) rather than

signal.

To formally analyze the voters’ belief updating processes further, I first define a single variable

representing overreaction, OV ER, as

Definition 4.1. OV ERi,t =





∆rA
i,t −∆rE

i,t if i wins in t,

∆rE
i,t −∆rA

i,t otherwise,

in which ∆rj
i,t = ri,t−1−rj

i,t (j ∈ {A,E}, A=actual, E=estimate) is the rank change (improvement)

for team i in week t. Of course this means OV ERi,t is simply rE
i,t − rA

i,t after wins, and the negative

of this expression after losses, but it is useful to think of overreaction in terms of the difference

between estimate and actual rank changes. It represents excess rank improvement to ‘good’ signals

(wins; usually signals indicating a team’s rank should improve), and excess rank decline in response

to ‘bad’ signals (losses).17 To control for factors that might affect belief updating under rationality

and analyze the determinants of overreaction, I then estimate the following regressions separately for

games in which the ranked team wins and loses:

OV ERijt = Xijtβ + δj + WEEKt ∗ δj + εijt. (2)

i, j and t denote rank, voter and week, respectively (i-j-t identifies a team-week); δj is a voter fixed

effect (FE). X is a vector of controls including the following:

1) HOME: dummy for team i-j-t playing a home game;

2) WEEK: week of the season;

3) SMARG: score margin = team i-j-t’s points minus opponent’s points;

4) TOP1− 5; TOP6− 10; TOP11− 15; TOP16− 20; TOP21− 25: dummies for i in top 1-5, etc.

(constant omitted);
17This definition is straightforward and easily interpretable; because of its simplicity, however, it does not allow for

‘bad’ wins (and ‘good’ losses), which certainly do occur. I experimented with numerous other definitions of overreaction
that do account for these types of signals and found that they generally do not result in substantially different estimates.
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5) OPP25: dummy for i-j-t’s opponent ranked in j’s top 25 in t;

6) SM25 = SMARG*OPP25;

7) APDEV : aggregate AP rank of i-j-t minus rank i (if positive j’s rank of this team is better

than its current aggregate rank; otherwise, j’s rank is worse);

8) RKSD: standard deviation of rank of i-j-t over voters in t assuming rank of 35 for unranked

teams;

9) RK2Y R: i-j-t ranked by at least one voter in at least one of previous two seasons;

10, 11) ST , REG: dummies for i-j-t being in j’s state or census region.

The voter FEs account for voter-specific tendencies to over or underreact. The interaction of the

voter FE and week is used to account for possible heterogeneity of ranking definitions. If voters weigh

season-performance and quality differently, their responses to games might vary over time (although

the final rankings still consistently represent truth).18 I also show results for alternative specifications

with weekly dummies and without the week-voter interaction term. Summary statistics for variables

used in the regression analyses are presented in Table 5.

Estimation results, excluding terms with voter FEs, are presented in Tables 6 and 7 with bootstrap

standard errors clustered by game.19 Given the null hypothesis of Bayesian updating, the expected

coefficient for most of the variables is zero. Non-zero coefficient estimates are consistent with Bayesian

updating for the variables APDEV , RKSD, and RK2Y R because these variables may affect beliefs

under rationality. The results are remarkable: many of the variables with expected coefficients of zero

under the null are significant at standard levels.

HOME is positive for wins, negative for losses, and almost always significant at at least the 10%

level. This means voters tend to overreact to home wins and away losses; they do not appreciate the
18Specifically, while the magnitudes of all voters’ reactions to signals should decrease as the season progresses (and

beliefs become more precise), the degree to which the reactions of voters who emphasize performance decrease may be
larger. This is because these voters’ belief revisions regarding future performance become less important as the number
of future games decreases. However, I do not expect this difference to be substantial, as the sample is restricted to the
first half of the season and there is a large number of remaining games even after the last week used in the analysis.

19Bootstrap standard errors are used because the dependent variable is constructed. Each game, which is defined by
its two opponents and the week (and whose definition does not vary across voters), is given an ID number. I cluster
errors by game rather than week or voter because residuals are likely to be correlated across voters within games. This
is because there is often game-specific information observed by the voters and excluded from this analysis. Estimated
standard errors are lower when clustered by any other variable (or not clustered at all). I also exclude the constant so
the dummies for all rank groups can be seen clearly.
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importance of home-field advantage. SMARG is negative for both estimates, and significant for wins.

Thus voters are insensitive to margin of victory, but appreciate margin of loss. Voters react more

strongly to margin of victory when the opponent is ranked. The rank of the opponent does not have a

significant effect on loss responses. The rank group dummies are insignificantly different from zero for

wins; but the TOP21− 25 variable is significantly different from (less than) the Top 11-20 dummies.

The top 10 dummies are positive, and strikingly large and significant, for losses.

APDEV takes the expected signs and is significant at the 1% level for most of the estimates. Voters

are influenced by their peers; for instance, rank improvements after wins are smaller if the winning

team is ranked worse by others. RKSD is not usually significant, though it is consistently negative

for wins, indicating that voters respond less strongly to these signals when there is disagreement about

the team’s rank among peers. RK2Y R is also not significant but consistently positive and of high

magnitude, with relatively high t-statistics, for wins. This implies that voters are substantially less

responsive to wins by teams that have not been in the poll in recent years. Both ST and REG

are usually positive, but rarely significant, for wins, providing only weak evidence of ‘home bias’ in

response to new information.20

The common feature among these findings is that saliency, or noticeability, is positively associated

with the degree to which information is processed. The relationships are sometimes subtle. For in-

stance, home-field advantage is a non-salient characteristic of the signal–it is not emotionally resonant.

But it is important; it shifts the score margin distribution to the right (increasing the probability of a

win). If voters are unresponsive to its full import, they will overreact to home wins and away losses,

which is exactly what I find they do. Score margin might be expected to be more salient since it is more

clearly observed. If this were the case, it would exacerbate overreaction as it increases in magnitude.

Yet I find that voters underreact more as the margin of victory increases for wins against unranked

opponents. Perhaps this is because score margin is not salient when the opponent is perceived to be

weak; voters may consider 20 point wins over bad teams equivalent to 60 point wins. The estimates

imply, however, that while voters are not responsive to the scores of wins against weaker teams they
20While the general form of this bias is well known, there is relatively little evidence of the bias also affecting information

processing.
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should be; the best teams do in fact beat teams of all types by the greatest margins. For example,

home teams with true rank 1-6 beat teams unranked in the final poll in the last five years by 49+

points 13.5% of the time, while the best unranked teams (those receiving votes in the final poll in last

two years) only win this way 4.9% of the time. On the other hand, score margin does not significantly

affect overreaction to wins over ranked opponents (F-tests cannot reject SMARG+SM25 = 0), which

are more salient signals. This is evidence that voters, due to their expertise, are capably of revising

beliefs in a sophisticated way when the signal is clearly noticeable.

Even more importantly, many of the findings can be attributed to saliency of the priors, or really a

lack thereof. Losses by top 10 teams are the most salient (and alarming, see Viscusi (1997) ) observable

signal, and the very large coefficient estimates for the TOP1−5 and TOP6−10 dummies for losses are

consistent with this idea. But losses for all top 25 teams are highly noticeable, so one might struggle to

argue that reactions to losses by top 10 teams should be that much greater than reactions to losses by

other ranked teams simply due to saliency of the signal. There are significant relative differences in the

priors, however, which may explain these results. The data show that the priors are much stronger for

top 10 teams than other ranked teams, relative to those teams below them. For example, the (raw21)

mean expected rank of teams ranked in a voter’s preseason top 10 is 11.5, and of teams in a voter’s

week 7 top 10 is 10.9. The corresponding numbers for teams ranked 11-25, and not ranked at all but

ranked by at least one other voter, are 25.6 and 22.0, and 28.9 and 27.9. This means that while top

10 teams were on average at least 10 rank spots better than top 11-25 teams, top 11-25 teams were

barely better than some unranked teams. Moreover, the mean difference between expected ranks of

neighboring top 10 teams in week 1 is 1.3; the mean difference for top 11-25 teams is 0.6. In week 7

these numbers are 1.6 and -0.2.22 Together, these numbers indicate that priors for high-ranked teams

are relatively precise–that the worse a team is ranked, the harder it is to distinguish from similarly

ranked teams.

Other things equal, this variation in precision of priors implies that Bayesian responses to losses
21Expected rank calculated as discussed above, using unsmoothed priors.
22The sign of the last number (-0.2) is surprising, it implies that of rank neighbors in the top 11-25, the worse-ranked

team had a better expected rank on average in this week. This is likely due to statistical noise and simply be evidence
that there is very little distinction between those teams.
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by top 10 teams should be relatively small, since prior beliefs about these teams are relatively strong.

If voters did not make this non-salient distinction among relative beliefs, however, they would react

relatively strongly to losses by high-ranked teams, since these signals are especially unexpected. This

is exactly what the summary statistics demonstrate the voters do, and the econometric results confirm.

Similarly, voters underreact to wins by low-ranked (21-25) teams. Because the priors for teams ranked

11-25 are very similar, the estimated Bayesian responses to wins by teams ranked 21-25 are large (as

they can easily improve greatly) and responses to teams ranked 11-20 small (as they need to compete

with top 10 teams to improve substantially). Thus this is additional evidence that the voters do not

appreciate the subtle distinctions in prior strength, and that this is a key factor driving non-Bayesian

behavior.

I now turn to a brief analysis of voter-level heterogeneity. To do this I use the voter FE estimates

from the specifications of the OV ER models with weekly dummies. One question of interest is simply

is there significant heterogeneity; the answer, unsurprisingly, is yes. F-tests resoundingly reject the

hypothesis that the FEs are equal for all of the voters for both the wins and losses models.23 Other

questions include what is the nature of the heterogeneity, and what is the relationship between over-

reaction to wins and losses by voter. Figure 1 sheds some light on these questions. It indicates a

remarkably sharp positive correlation between overreaction to wins and losses, providing strong evi-

dence that voter tendencies to, at least apparently, over and underreact are general, or similar, across

signal types.

Next, I relate the estimates of overreaction to two other observable characteristics of the voters:

mean distance between prior and final rankings, and years of poll experience. The distance variable

represents accuracy; voters whose prior rankings are very close to their true rankings may have superior

information and thus more precise prior distributions, and as a result respond relatively weakly to

signals of all kinds. In other words, variation in prior strength may explain variation in voter-level

overreaction. If so, this would be seen in a positive correlation between the overreaction FEs (for both

23These models are estimated with a constant and without a FE for one voter (and without the TOP21-25 variable)
to avoid perfect collinearity. This specification is used, rather than the full set of FEs with no constant, because the
constant is actually estimated much less precisely than the voter-level effects, and thus when the constant is included
the FE standard errors become much smaller.
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wins and losses) and the distance variable. Voters with more experience might be expected to be less

susceptible to the mistakes made on average discussed above (underreaction to wins and overreaction

to losses). This would be seen in a positive correlation between overreaction and experience for wins,

and negative for losses. I separately regress the FEs from the wins and losses models on the distance

and experience variables to test for these effects but find that all of the estimates are highly insignificant

(results omitted for brevity). This implies that voter-level tendencies to overreact, while general across

signal types, are not explained by differences in prior strength or experience. A deeper analysis of

heterogeneity of tendencies to over and underreact is left for future research.

5 Two Robustness Checks

In this section I discuss two robustness checks for the preceding analysis. The first is simple: I replace

the estimated Bayesian updated ranks with the true ranks (the individual voters’ final ranks).24 The

true ranks are unbiased estimators of the Bayesian ranks, but measured with substantial error. The

resulting estimates of the effects of signal and prior characteristics on over or underreaction are expected

to be much less precise, but qualitatively similar, to those discussed above. Using this method also

causes a loss of precision due to loss of sample, because the adjustment to account for teams leaving the

poll is more severe. The upside to using this approach is that it eschews reliance on any assumptions

made to estimate the prior and signal distributions. With this approach I find reasonably strong

evidence supporting the main results: that belief revisions are excessive when new information is

salient and/or strength of prior beliefs is non-salient.

The second robustness check is methodologically much more complex, and qualitatively very dif-

ferent from the other analyses. Instead of explicitly computing Bayesian posterior ranks based on

estimated prior beliefs, I assume the actual posteriors are Bayesian, and use these to estimate the

prior distributions. I then compare the estimated priors to the data, and analyze overreaction again

using the predicted posteriors computed with the new estimated priors. Once more I find evidence

supporting the earlier conclusions.
24This methodology is analogous to that used by Amir and Ganzach, as they compare analysts’ forecasted earnings

changes to actual changes.
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5.1 Check 1: Replacing Estimated Posteriors with Truth

Implementing this check is very simple. I again use Definition 4.1 for the variable of interest, overre-

action, only replacing ∆rE with ∆rF , in which ∆rF is the (adjusted) prior rank minus the (adjusted)

voter final rank. The main difficulty with doing this is that the adjustment for teams entering and

exiting the polls is more costly now. Instead of 0-5 teams exiting the poll per voter per week, there

are usually 5-10 teams.

Still, the results are strong. The mean overreaction for wins and losses is 0.36 and 1.56, respectively.

This reinforces the finding that overreaction to losses is relatively large; the exact numbers are different

from those found above due to the greater noisiness of the final rankings as compared to Bayesian

posterior rankings. I also estimate equation 2 using the new measure of overreaction as the dependent

variable. Results are presented in Table 8; they are similar to, but weaker than, those in Tables 6 and

7. Saliency still sometimes significantly affects information processing (HOME and now SMARG for

losses), but not as consistently. Underreaction to wins is still greatest for teams ranked 21-25, and

overreaction to losses still greatest for top 10 teams, but the magnitudes are smaller. It is interesting

that APDEV is now positive and significant in the ‘Wins’ model. This reflects voters not being

sufficiently influenced by their peers (although the results above showed that voters are influenced

to some extent); when a voter ranks a team higher than its aggregate rank the team is likely to be

substantially worse than the voter currently believes it to be. Thus, even after wins, teams with poor

aggregate ranks are likely to have poor true ranks, and voters appear to overreact when they do not

worsen these teams’ ranks significantly. Overall, though, these results support the findings of Section

4.

5.2 Check 2: Estimating the Bayesian Priors

As a final robustness check for the individual voter analysis I invert my analytical approach: rather

than estimate the Bayesian posteriors and compare these to the actual posterior rankings, I assume the

actuals are in fact Bayesian, and estimate the priors that are most consistent with, or best rationalize,

the data. I compare the expected ranks calculated using the estimated priors to those calculated
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using the empirical frequencies of final rank conditional on current (prior) rank throughout the season.

Next, I compare the predicted Bayesian posteriors, obtained using the newly estimated priors, to the

actual posteriors using the same regression analyses as before. I find that overreaction, defined using

predicted Bayesian posteriors, is still positively related to salience (losses, home field, etc.).

5.2.1 Method

To estimate the priors that rationalize the observed behavior I continue to use the Bayesian updating

model specified above, and the same score distributions, rank groups, and method for accounting for

limited rankings and mapping beliefs to rankings as used above. I am comfortable continuing to use

these assumptions since they are all fairly weak, and the first robustness check abstracted from many

of them. Instead of using the priors estimated as above, however, I do a grid search over a large set

of priors to find those that minimize the distance between predicted Bayesian posterior rankings and

actuals. I search for a different prior for each week, seven priors total, since the priors change week to

week under rationality. Formally, I search for

f∗t = a
ft

rgmin
∑

i

∑

j

| ˆrijt(ft)− ∼
r ijt|, t = 1, ..., 7, (3)

in which r̂ijt(ft) denotes the predicted rank of team i for voter j in week t as a function of the priors,

ft (and other observables) and
∼
r is actual posterior. I use sum of absolute deviations as a distance

metric to minimize sensitivity to outliers.

A key step here is the choice of priors to search over. The set of possibilities is infinite. The

problem is also made more complicated as the term ‘prior’ as I have used it actually refers to a joint

distribution of order statistics. Specifically, each prior (f) is the joint distribution of categorized final

rank conditional on categorized prior rank for all 119 (the number of Division I-A) teams. As described

in the Appendix, I categorize final ranks for all teams (1-6, 7-12, 13-18, 19-25 and unranked), and prior

ranks for unranked teams (seven categories), so that there are 32 (=25+7) prior rank categories and

five final rank categories. This means that each f is a 32 x 5 matrix, with rows that all sum to one

and columns which, when weighted by the appropriate number of teams, sum to the number of teams
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in each final rank category (6, 6, 6, 7 and 94(=119-25)).

In order to search over these joint distributions I must first generate a set of matrices with the

features described above, and consistent with the idea that teams are ranked in order of expected rank.

I do this by assuming teams are ranked on a jointly normal latent variable, with zero covariance across

teams. For concreteness I refer to this variable here as quality. I equally space the means of beliefs

about the quality variable across the unit interval (0, 0.0085, ..., 0.9915, 1) for all 119 teams. Next,

rather than assuming that each quality variable has the same variance and searching for the optimal

value of this variance, I assume that variances are constant only within categories of prior ranks. For

this purpose I use the final rank categories for top 25 teams (1-6, 7-12, ...), and divide the unranked

teams into two groups, ‘others receiving votes’ (ranks 26-37) and all others (ranks 38+). I create the

others receiving votes category because it is a distinct group of unranked teams–those just on the

cusp of being in the top 25 (there are an approximate average of 12 teams receiving votes throughout

the first half of the 2006 season). There are thus six prior rank categories with (potentially) distinct

variances.

I permute five different variances (0.002, 0.006, 0.010, 0.014, 0.018) over the six rank groups. This

leads to the generation of a set of 56 = 15, 625 joint prior distributions to search over, each of which I

estimate through simulation of the latent jointly normal quality variables (10,000 runs). This method

of determining the prior set that I search over is fairly arbitrary. It serves the purpose at hand, however,

as the means and variances of the quality variable are not parameters of interest. What is critical is

that we have a large and varied set of order statistic distributions to search over. This method yields

this large and varied set.

5.2.2 Results

Table 9 illustrates some properties of the estimated Bayesian priors, which I henceforth refer to as

simply the Bayesian priors, in comparison with the analogous empirical ones. It shows, first of all,

that the Bayesian prior expected ranks are fairly uniformly spaced relative to the actuals, especially

from week three forward. The Bayesian prior expected ranks for teams ranked 13-18 and 19-25 are
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approximately 17-19 and 23-25, respectively, for weeks 3-6. The actual expected rank for teams in

both of these rank groups is around 25 for this time period. Thus the voters act as if beliefs distin-

guishing teams ranked 13-25 are relatively precise; teams ranked 13-18 are thought to be substantially

better than those ranked 19-25. In reality, the true ranks of these two groups of teams are basically

indistinguishable.

The other important phenomenon revealed in this table relates to teams with prior rank 1-6.

The actual expected rank of these teams declines steadily over time, as one would expect given that

information about the teams is accumulated over time and beliefs about their true ranks become more

precise. The Bayesian prior expected ranks, however, start quite low, and jump up in weeks three, six

and seven. These were the only weeks when teams with aggregate rank 1-6 lost games. This implies

that voters acted as if their priors for top-ranked teams were weak when they lost, and strong when

they won, which is completely consistent with the finding that voters overreact to losses by top-ranked

teams. Note also that the gap between expected rank of top 1-6 and 7-12 teams is much larger for the

actuals than estimates, which is also evidence that voters did not appreciate how strong their priors

for top 1-6 teams were.

Finally, I again conduct the overreaction regression analysis discussed above. I continue to use

Definition 3.1 for the dependent variable, overreaction, now using the predicted posterior ranks as

the estimated Bayesian posteriors. Overreaction is now a reaction residual. If the voters were in fact

Bayesian, this residual would be independent of such observable variables as win, loss, etc. Instead

we find a pattern similar to that found above in which overreaction is significantly greater for losses:

mean redefined OV ER is 0.19 and 0.97 for wins and losses, respectively. Even though I have fit the

priors to the data there is still evidence of overreaction to more salient signals (losses). The values are

all positive because the predicted rank changes regress to the mean due to the nature of the estimator.

I also, again, estimate equation 2 for wins and losses separately, using the newly defined OV ER as

the dependent variable. I do not report the results, but find several variables to be significant, which

should have coefficients of zero under rationality, including HOME for both wins and losses. This

again supports the results found above.
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6 The Aggregate Polls

The analysis thus far has focused on the behavior of individual voters over a relatively short time

period, the 2006 season, due to data limitations. The data on aggregate voter behavior are publicly

available for all weeks and years. These data are worth exploring for various reasons. First, they

allow priors to be estimated using historical final rank frequencies. Second, I can conduct the analyses

for multiple seasons, and confirm that any trends found are not confined to 2006 for some reason.

Third, the aggregate polls include rankings for a larger set of teams–30-50 for most weeks, since since

aggregate point totals for all teams receiving votes are reported, including those not in the top 25.

This allows for a wider range of reactions, especially for teams ranked 11-25, i.e. these teams now have

farther to potentially fall.

I examine weeks 1-4 of the 2004-2006 seasons. I include the 2006 season even though I have already

analyzed it to see how using the aggregate approach changes results for a particular season. I restrict

the sample to weeks 1-4 because, as mentioned above, using data further from the final poll increases

power and minimizes the probability of voters committing the hot hand fallacy (inferring trend in team

quality change). I use the same score distributions and rank categories for the top 25 as above, but

now add an additional final rank category, 26-35. I limit the maximum final rank to 35 even though

it varies year to year because there are at least 35 teams in the final poll in every year since the poll

began including 25 teams (1989). I estimate the prior distributions using the historical final rank

frequencies for seasons 1989 through the year prior to current season (2003 for the 2004 estimates,

04 for 05 etc.). These frequencies are still quite noisy and require smoothing to obtain monotonically

increasing expected rank. I use the same criterion and method for smoothing (smooth until minimum

13 consecutive increasing expected rank, then average). I discuss an alternative method in which I do

not smooth priors at all below.

The statistic used previously for testing validity of the rankings, mean absolute deviation from final

rank, is somewhat less impressive in this case: 6.3, 6.33 and 6.46 for the actuals, estimates and priors

respectively. While both actual and estimated posteriors are superior to the priors, the margin is small,

and the estimates no longer out-perform the actuals. Formal tests are easier now as the sample is now
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much closer to i.i.d., since there are no repeated games or voters. Paired t-tests for two-sided tests are

insignificant at conventional levels. These numbers imply that the aggregate rankings are superior to

the individual ones, which is not surprising. The estimated rankings are actually less accurate in 2006

than 05. This is reassuring, because it implies the validity of the individual analysis demonstrated

above is not dependent on anomalies that occurred during the 2006 season.

Overreaction, measured in the usual way, now has means of -0.18 and -0.09 for wins and losses,

respectively. Overreaction is still greater to losses than wins, but on average it is close to zero. These

numbers are misleading, however, as is seen when the statistic is again split out by initial rank group.

Mean overreaction to losses for top 10, 11-25 and 26+ teams are 3.06, -2.15 and 0.24, respectively.

Overreaction is still strongest on average in response to losses by top-ranked teams. But there is

strong underreaction to losses by middle ranked teams. This is because the priors for these teams are

so uncertain, and now the potential rank changes are greater. That is, a team that was ranked 20 for

an individual voter could have a maximum rank decline of five spots; in the aggregate analysis, its

rank decline can be up to 15 spots. It is worth noting that because these mistakes occur in opposite

directions they may nullify each other to some extent. For example, if a top 10 team loses it may fall

too far in the rankings and become a top 11-25 team. But if it wins its next game it may rise too far,

partly making up for the previous excessive decline.

I also confirm that priors are relatively stronger for top 10 teams. Expected ranks in week 1 for top

10, top 11-25 and top 26-35 teams are 12.5, 27.7, and 32.7. Numbers are very similar in week 4. Thus,

even taking into consideration the censored nature of the data, the difference between expected ranks

of top-ranked and middle-ranked teams is again much greater than the difference between middle- and

low-ranked teams. It is very important to confirm that this trend was not confined merely to the 2006

season.

Regression analysis also yields results similar to those found using the individual voter data. I again

estimate equation 2, now dropping voter-specific variables, adding year fixed effects and using broader

rank group dummies; TOP10, TOP11 − 25 and TOP26p (26+). Results are presented in Table 10.

For wins, voters, even in the aggregate, fail to fully appreciate home-field advantage and score margin
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in general, but again the voters do respond to score margin when it is salient, i.e. games in which the

opponent is ranked in the top 25. Regarding losses, the importance of home is not recognized, while

there is no evidence that score is over-reacted to. And while TOP10 is not significant, it is significantly

different from TOP11 − 25 at the 1% level. Again, we see that voters overreact to losses when the

priors are strong and do the opposite when weak. Voters also overreact to score margin after losses

when the opponent is in the top 25.

As a robustness check for these results, I also construct estimates using unsmoothed priors and

estimate the regressions. I can do this for the aggregate, but not the individual, analysis because of

the availability of historical aggregate rank data. Still, as noted above, the raw historical final rank

frequencies are very noisy. Using this method, the estimated posterior mean absolute deviation from

truth is 6.49, which is actually greater than the mean deviation for the priors (still 6.46), though not

significantly so. Still, the overreaction measures are qualitatively similar to those found elsewhere.

Mean overreaction to wins is 0.03 and 0.43 to losses. Mean overreaction to losses by top 10, 11-25 and

26+ teams is 2.81, -2.33, and 1.4, respectively. The regression estimates are similar to those found

using smoothed priors, indicating that the results in general are not sensitive to the smoothing method.

7 Concluding Remarks

This study has compiled extensive evidence of both Bayesian updating and over and underreaction to

new information by experts in a real-world context. The errors are usually not large in an absolute

sense, and sometimes nullify each other, but they are systematic and statistically significant. The

errors cannot be explained by any single known bias, such as anchoring or recency, since they point

in opposite directions. A more general factor that appears to explain the data is salience: voters do

not pay full heed to non-salient new information and subtle distinctions in strength of priors. Namely,

voters improve teams’ rankings excessively after wins at home. The voters worsen rankings excessively

after losses on the road, by large margins, and in general, and especially, for top-ranked teams. Decisive

wins against unranked teams are unappreciated by voters. Individuals who over (under) react in general

to wins do the same to losses, but this is not because they have different prior precisions.
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Hopefully, these results will strengthen economists’ confidence in experimental findings of non-

Bayesian behavior, and enhance understanding of when the various types of non-Bayesian mistakes are

likely to come about. Using experiments to confirm the relationship between salience and overreaction,

analyzing individual-level heterogeneity at a deeper level, and applying these results to the study of

real-world economic phenomena are important directions for future research.
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A Estimation

A.1 Testing Constant Team Qualities

To illustrate why performance is correlated with time if: 1) voters rank teams on current quality and, 2)

quality changes throughout the season, consider the following simple example. Suppose there are only

two teams, two games, and performance is a deterministic function of quality. Specifically, suppose

team i’s quality in period t is Xi,t and the score between teams 1 and 2 in period t is st
12 = X1,t−X2,t.

Suppose we have a sample of data from many seasons, and X1,1 and X2,1 are i.i.d. for all seasons. So

that this example is analogous to the results presented in Table 1 suppose team 1 is always the home

team. Last, suppose team qualities change over time so that Xi,2 = Xi,1 + εi, in which εi is i.i.d. with

mean 0 and positive variance.

Let
∼
r i denote team i’s final rank. Voters rank teams on current quality so

∼
r1 = 1 ↔ s2 > 0 (team

1, or the home team, finishes with final rank 1 if and only if it wins the second game; w.l.o.g. ignore

ties). Then the expected score margin of the second and final game given that the home team is ranked

1 and the away team ranked 2 is E(s2|s2 > 0) = E(Xi,1 + εi−Xj,1− εj |Xi,1 + εi−Xj,1 + εj > 0). The

expected score margin of the first game given these final ranks is E(s1|s2 > 0) = E(Xi,1 −Xj,1|Xi,1 +

εi −Xj,1 − εj > 0). Since E(εi|Xi,1 + εi −Xj,1 − εj > 0) > 0 and E(εj |Xi,1 + εi −Xj,1 − εj > 0) < 0

we see that E(s1|s2 > 0) < E(s2|s2 > 0). This implies that observed performance is correlated with

time. The logic of this example applies when there are greater than two teams and games.

A.2 Score Distributions

The natural way to estimate the score distributions (the g’s) is to use the historical distributions of

scores between teams of the various final ranks. Because I do not have historical individual final rank

data, I need to use the aggregate final rank data for this purpose. The other issue complicating the

estimation of the g’s is that although I have access to all historical scores, the sample sizes for scores

between teams of particular ranks is highly limited. Recall that I use score data dating back to 1989
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because that is when the AP Top 25 in its current form began.25 In 17 years of data there are very

few games between teams of each rank combination during the regular season since it is so short.

For example, there were exactly two games between teams of final rank 1 and 2 played during the

regular season from 1989-2006. In addition, I condition the distributions on home/away status, to

account for this variable affecting the distributions in different ways for teams of different ranks. As

a result I am forced to use multiple smoothing techniques. First, I divide the true top 25 into four

categories; 1-6, 7-12, 13-18, and 19-25. This categorization is the finest that yielded relatively large

sample sizes (n > 20) for games between teams in each category. Then, I divide the score distribution

into categories of size 7 (with upper and lower bounds of plus/minus 49+). I construct estimates using

both the raw frequencies of scores in each bucket for games between teams in each rank group, and

smoothed frequencies obtained using what is essentially a uniform kernel with bandwidth two, and the

differences are minimal. The smoothed estimates are referred to by default in the body of the paper,

and the smoothing method is explained as follows.

There are seven true rank groups (1-6, 7-12, 13-18, 19-25, ranked in previous two years, ranked in

previous three-five years, unranked in previous five years). There are 17 points of support for each

score margin distribution (-50-, [-49,-43],...,[-7,-1],0,[1,7],...,[43,49],50+). Let ci
j,k denote the historical

count of games with score margins in category i ∈ {1, ..., 17} for games between home team of rank

group j and away team of rank k. j and k are henceforth suppressed. For i ∈ {3, ..., 6, 12, ..., 15} let

∼
c

i
= 1

5Σi+2

î=i−2
cî. For i ∈ {1, 2} let

∼
c

i
= 1

3+I(i=2)Σ
i+2

î=1
cî, in which I(i = 2) = 1 if i = 2, else I(i = 2) = 0.

For i ∈ {16, 17} let
∼
c

i
= 1

3+I(i=16)Σ
18
î=i−2

cî.
∼
c

i
= ci if i = 0. Let g(si

jk) denote the probability the

score margin, s, is in category i for games between home teams in rank group j and away in group k.

Then ĝ(si
jk) =

∼
c

i

Σ17
î=1

∼
c

î
.

25I use data from all regular season games but exclude games played at neutral sites. I do not exclude any games
due to injuries. The significance of injuries in the sport is very difficult to determine–many teams have had very good
seasons with multiple seemingly major injuries (e.g. Nebraska 1994, Louisville 2006). I believe attempting to clean the
data this way would create more noise than it would eliminate.
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A.3 Prior Distributions

I estimate the prior distributions using the empirical frequencies of true (final) rank conditioned on

current rank.26 I assume that voters have the same belief distributions conditional on prior rank (e.g.,

each voter’s number one team in week one has the same probability of being the true number one,

two, etc.). Thus 25 distributions need to be estimated (one for each ranked team), for each week.

Recall that by assumption the voters have rational expectations:
∼
r i,t <

∼
r j,t → Et(ri) ≤ Et(rj), ∀i, j, t.

Table 2 shows that due to the limited sample size, monotonicity of expected rank is violated in the

raw frequencies.27

To account for this inconsistency I again apply smoothing techniques to the distributions. In this

case the key variation is between, rather than within, initial ranks, and I smooth the distributions

accordingly. That is, for each prior rank, I estimate the probability of finishing in a rank group as the

empirical probability of finishing in the group for teams with the prior rank and neighboring higher

and lower prior ranks. An illustrative example would be to estimate the probability a team of prior

rank 2 finishing in rank group 1-6 as the frequency of teams with prior ranks 1-3 finishing 1-6. The

practical question then is how many neighboring ranks should be used for this purpose. An extreme

approach would be to use the minimum number to obtain monotonicity of expected rank over all 25

prior ranks), but this can lead to over-smoothing. I use a mid-point threshold to determine the number

of neighbors to use: the minimum number that yields monotonically increasing expected rank for at

least 13 consecutive prior ranks. Rather than use a different number of neighbors for the other teams,

I simply average the frequencies when monotonicity is violated. When a high number of neighbors is

required, the distributions are so similar that assuming them to be equal is a reasonable approximation.

Formally, there are again seven final rank groups and there are 32 prior rank groups, which include

the 25 ranked teams and 7 groups of unranked teams. The priors for the unranked teams are estimated

as the raw empirical frequencies of final rank. Let nv
jt,k denote the number of teams for voter v in

prior rank group j and period t that finished in rank group k (for that voter). Then if j > 25 (the

26It is reasonable to believe that other observable factors, such as teams’ ranks in the previous week, affect the priors.
I ignore these factors for simplicity.

27I calculate expected rank by computing the weighted average of midpoint ranks from each rank group and 35 for
the unranked category. Results are not sensitive to the choice of value for unranked teams.

32



team is currently unranked), fi,t(k|rit ∈ j) is estimated as Σvnv
jt,k

ΣkΣvnv
jt,k

.

If j ≤ 25 I smooth the estimated distributions using neighboring distributions. That is, I average

the frequencies for all prior rank with similar prior ranks (other prior ranks just above and below).

Specifically, letting b denote the number of neighbors used, I estimate the probability team i with prior

rank j has true rank k (in period t), fi,t(k|rit = j), as
Σ

ĵ=j−b:j+b
Σ
v

nv
ĵt,k

Σ
ĵ=j−b:j+b

Σ
k
Σ
v

nv
ĵt,k

. I ‘wrap around’ neighbors for

neighbors below j = 1 and above j = 25. That is, I replace j − b = 0 with 1, j − b = −1 with 2, etc.,

and j + b = 26 with 25, j + b = 27 with 24, etc. This satisfies ‘rank accounting’ constraints (each

voter’s expected number of teams finishing in rank group 1, ranks 1-6, equals six, etc.).

I use the minimum b such that expected rank, calculated using the estimated priors, monotonically

increases for at least 13 consecutive prior ranks (j’s). Denote this minimum b as b̂. The number 13 is

arbitrary; it is chosen because it is the mid-point of the top 25. Ideally all 25 expected ranks would

monotonically increase, however, the minimum number of neighbors needed to satisfy this requirement

causes extreme over-smoothing for some prior ranks.

If there is j such that estimated Et(r|rit = j) > Et(r|rit = j + 1), i.e. monotonicity of expected

rank is violated after smoothing, I simply average the estimated priors for j and j + 1 (and j + 2, etc.,

as necessary):

f̂i,t(k|rit = j) = f̂i,t(k|rit = j + 1) =
Σ

j,j+1
[ Σ
ĵ=j−b:j+b

Σ
v
nv

ĵt,k
]

Σ
j,j+1

[ Σ
ĵ=j−b:j+b

Σ
k
Σ
v
nv

ĵt,k
]
. (4)

This is an admittedly crude way to obtain weakly monotone increasing estimated expected ranks.

However, it accurately reflects the fact that the voters should be very uncertain about the true ranks

of teams of some prior ranks, given the extreme variability of actual final ranks of those teams.
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B Tables and Figures

Table 1: p-values for two-sided t-tests of H0: expected score differences conditional on final rank are
constant throughout the season

HomeRk AwayRk Period N s̄ σ̂s̄ p-value
1-12 13-25 Aug-Oct 15 69 13.8 1.7 0.17
1-12 13-25 Oct 16-Dec 15 86 17.1 1.7
1-12 Unranked Aug-Oct 15 140 21.3 1.4 0.79
1-12 Unranked Oct 16-Dec 15 150 20.7 1.3
13-25 1-12 Aug-Oct 15 70 -6.9 1.8 0.18
13-25 1-12 Oct 16-Dec 15 65 -3.5 1.7
13-25 Unranked Aug-Oct 15 161 14.9 1.2 0.28
13-25 Unranked Oct 16-Dec 15 173 13.0 1.2

Notes: ‘Rk’ = final AP aggregate rank; s̄ = mean home score - away score; σ̂s̄ = estimated std error of s̄. Sample
includes games played 1989-2005 with at least one Division I-A team on non-neutral field. ‘Unranked’ restricted to

teams receiving votes in final aggregate poll in at least one of previous two seasons.

Table 2: Individual Voter Final Rank Frequencies

Prior Pr(r ∈ [1,6]) Pr(r ∈ [7,12]) Pr(r ∈ 13,18]) Pr(r ∈ [19,25]) Pr(r ∈ [26+]) Total E[r]
1 53.1% 23.4% 18.8% 4.7% 0.0% 100% 8.0
2 29.7% 26.6% 28.1% 14.1% 1.6% 100% 11.6
3 34.4% 32.8% 23.4% 7.8% 1.6% 100% 10.2
4 18.8% 46.9% 21.9% 7.8% 4.7% 100% 11.9
5 32.8% 39.1% 21.9% 4.7% 1.6% 100% 9.8
6 42.2% 34.4% 14.1% 3.1% 6.3% 100% 9.8
7 50.0% 28.1% 9.4% 6.3% 6.3% 100% 9.4
8 48.4% 23.4% 15.6% 4.7% 7.8% 100% 10.1
9 18.8% 31.3% 25.0% 6.3% 18.8% 100% 15.4
10 23.4% 20.3% 15.6% 3.1% 37.5% 100% 19.0

Notes: Prior = preseason rank. E(r) computed using midpoint ranks from each final rank category (3.5 for [1,6], 9.5 for
[7,12], etc.) and 35 for unranked category.
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Table 3: Absolute Deviations from Postseason Ranks

Estimates Actuals Priors FlatPrior
mean 3.39 3.61 3.73 5.05
sd 3.19 3.32 3.43 2.70
N = 10,893

Table 4: Rank Change (Prior Rank - Posterior Rank) Means and Standard Deviations

Prior Rank Wins Losses Byes
Actuals Estimates Actuals Estimates Actuals Estimates

1-5 0.07 -0.12 -6.63 -2.83 0.10 -0.91
( 1.23 ) ( 1.27 ) ( 2.79 ) ( 2.35 ) ( 0.82 ) ( 1.33 )

6-10 0.35 0.45 -6.80 -3.94 -0.06 -1.92
( 1.91 ) ( 1.92 ) ( 4.00 ) ( 3.29 ) ( 1.14 ) ( 2.66 )

11-15 1.34 0.32 -6.59 -8.01 0.07 -5.50
( 2.41 ) ( 2.49 ) ( 3.20 ) ( 2.65 ) ( 1.45 ) ( 1.68 )

16-20 1.85 1.44 -4.52 -5.33 0.81 -2.59
( 2.52 ) ( 2.95 ) ( 2.24 ) ( 1.76 ) ( 1.83 ) ( 1.94 )

21-25 2.35 4.63 -0.65 -0.48 1.14 2.18
( 2.37 ) ( 3.91 ) ( 1.19 ) ( 1.39 ) ( 1.40 ) ( 1.68 )

Total 1.15 1.31 -4.76 -4.32 0.43 -1.91
( 2.29 ) ( 3.15 ) ( 3.63 ) ( 3.51 ) ( 1.49 ) ( 3.18 )

N = 8028, 2008, 857 (Wins, Losses, Byes); Prior Rank = actual, observed individual voter rank, weeks 1-7 of 2006
season; Posterior Rank = following week rank.
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Table 5: Descriptive Statistics of Variables Used for Econometric Analysis

Variable Mean Std. Dev. Min Max
Wins OVER -0.167 2.958 -15 15
n = 8028 HOME 0.670 0.470 0 1

SMARG 23.634 14.697 1 62
OPP25 0.159 0.366 0 1
SM25 2.347 6.429 0 42
APDEV 0.386 3.117 -13 18
RKSD 3.241 1.777 0 8
RK2YR 0.975 0.156 0 1
ST 0.032 0.177 0 1
REG 0.099 0.298 0 1

Losses OVER 0.443 3.296 -13 16
n = 2008 HOME 0.407 0.491 0 1

SMARG -12.269 8.674 -42 -1
OPP25 0.635 0.481 0 1
SM25 -9.384 9.961 -42 0
APDEV 0.674 3.553 -12 17
RKSD 3.452 1.414 1 7
RK2YR 0.965 0.183 0 1
ST 0.034 0.182 0 1
REG 0.099 0.299 0 1

Variables defined in body text.

Figure 1: Scatterplot of De-Meaned Voter Fixed Effect Estimates with Trend Line
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Table 6: Estimation Results: Wins

A B C D E F
HOME 1.682*** 1.669*** 1.631*** 1.487*** 1.495*** 1.424***

(0.333) (0.356) (0.352) (0.370) (0.339) (0.357)
SMARG -0.056*** -0.088*** -0.055*** -0.057*** -0.086*** -0.056***

(0.010) (0.011) (0.010) (0.012) (0.009) (0.011)
TOP1-5 -0.060 0.944 0.068 -0.358 0.496 -0.005

(1.282) (1.522) (1.235) (1.505) (1.566) (1.471)
TOP6-10 -0.246 0.800 -0.071 -0.596 0.343 -0.196

(1.278) (1.479) (1.247) (1.562) (1.522) (1.570)
TOP11-15 1.221 2.369 1.370 0.960 1.893 1.336

(1.292) (1.582) (1.311) (1.609) (1.606) (1.587)
TOP16-20 0.901 2.082 1.039 0.694 1.675 1.059

(1.384) (1.714) (1.289) (1.620) (1.593) (1.623)
TOP21-25 -1.555 -0.667 -1.394 -1.952 -1.150 -1.567

(1.382) (1.718) (1.296) (1.627) (1.491) (1.621)
OPP25 -1.541** -1.771*** -1.906*** -1.410* -1.688** -1.851***

(0.761) (0.569) (0.709) (0.786) (0.752) (0.614)
SM25 0.063 0.078*** 0.074* 0.058 0.070* 0.071*

(0.044) (0.029) (0.042) (0.056) (0.037) (0.041)
APDEV -0.122*** -0.110*** -0.124*** -0.127*** -0.120*** -0.129***

(0.030) (0.027) (0.028) (0.034) (0.034) (0.020)
RKSD -0.240 -0.259 -0.262** -0.180 -0.177 -0.204

(0.158) (0.191) (0.122) (0.159) (0.164) (0.149)
RK2YR 1.483 1.387 1.409 1.467 1.437 1.386

(1.182) (1.540) (1.143) (1.332) (1.562) (1.272)
ST 0.228 0.143 0.224** 0.110 0.016 0.107

(0.140) (0.118) (0.091) (0.125) (0.114) (0.137)
REG 0.087 0.024 0.092 0.071 -0.017 0.077

(0.091) (0.104) (0.102) (0.095) (0.090) (0.090)
Truth: Ind. X X X
Smoothed g() X X X X
Week FE X X
R-sq 0.294 0.336 0.304 0.280 0.315 0.292
N 8028 8028 8028 8028 8028 8028
Significance levels : * : 10% ** : 5% *** : 1%

Bootstrap standard errors clustered by game in parentheses. “Truth: Ind.” denotes individual final rankings used as
true rankings; otherwise, aggregate final rankings. “Smoothed g()” denotes smoothed score distributions used;

otherwise, raw score distributions. “Week FE” denotes weekly dummies; otherwise, categorical week variable interacted
with voter FE.
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Table 7: Estimation Results: Losses

A B C D E F
HOME -1.430* -1.373* -1.523* -1.109* -1.255** -1.074

(0.781) (0.797) (0.882) (0.584) (0.523) (0.673)
SMARG -0.057 -0.040 -0.023 -0.038 -0.030 -0.012

(0.059) (0.049) (0.038) (0.042) (0.054) (0.037)
TOP1-5 5.993** 6.682** 7.658*** 4.532** 6.108** 6.002***

(2.476) (2.637) (2.146) (2.121) (2.427) (1.623)
TOP6-10 4.755** 4.554** 6.182*** 3.367** 4.248** 4.660***

(2.044) (2.045) (1.969) (1.487) (1.891) (1.552)
TOP11-15 0.296 1.317 1.647 -0.557 0.946 0.794

(1.969) (2.240) (2.024) (1.586) (1.846) (1.826)
TOP16-20 0.107 1.303 1.698 -0.957 0.658 0.587

(1.765) (2.299) (1.958) (1.560) (1.814) (1.795)
TOP21-25 0.884 1.938 2.560 -0.176 1.150 1.480

(1.837) (2.402) (1.989) (1.621) (1.887) (1.870)
OPP25 -0.620 0.381 -1.311 -0.151 0.343 -0.913

(1.017) (0.861) (0.888) (0.765) (0.781) (0.759)
SM25 0.040 0.098 -0.019 0.029 0.073 -0.023

(0.070) (0.069) (0.051) (0.059) (0.070) (0.050)
APDEV 0.097** 0.107*** 0.108*** 0.131*** 0.129*** 0.151***

(0.044) (0.039) (0.036) (0.037) (0.045) (0.033)
RKSD 0.200 0.088 0.157 0.071 0.094 0.011

(0.269) (0.277) (0.330) (0.204) (0.249) (0.268)
RK2YR -1.141 -0.952 -1.206 -0.433 -0.844 -0.398

(0.951) (1.024) (1.064) (0.733) (1.014) (0.843)
ST 0.048 -0.082 0.080 0.112 -0.030 0.110

(0.286) (0.302) (0.304) (0.332) (0.368) (0.306)
REG 0.107 -0.029 0.051 0.182 0.028 0.105

(0.270) (0.219) (0.220) (0.248) (0.270) (0.198)
Truth: Ind. X X X
Smoothed g() X X X X
Week FE X X
R-sq 0.472 0.400 0.485 0.473 0.426 0.481
N 2008 2008 2008 2008 2008 2008
Significance levels : * : 10% ** : 5% *** : 1%

Bootstrap standard errors clustered by game in parentheses. “Truth: Ind.” denotes individual final rankings used as
true rankings; otherwise, aggregate final rankings. “Smoothed g()” denotes smoothed score distributions used;

otherwise, raw score distributions. “Week FE” denotes weekly dummies; otherwise, categorical week variable interacted
with voter FE.
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Table 8: Estimation Results: Robustness Check 1

Wins Losses
HOME -0.835 -3.016***

(0.711) (1.137)
SMARG -0.036 -0.158*

(0.030) (0.084)
TOP1-5 0.501 2.910

(2.219) (3.253)
TOP6-10 -0.996 3.442

(2.442) (3.078)
TOP11-15 -0.660 2.174

(2.360) (3.005)
TOP16-20 -2.357 2.425

(2.416) (2.944)
TOP21-25 -4.558* 2.099

(2.416) (3.044)
OPP25 1.246 3.456**

(1.975) (1.523)
SM25 -0.042 0.274***

(0.114) (0.103)
APDEV 0.133** -0.054

(0.065) (0.068)
RKSD -0.076 -0.302

(0.347) (0.429)
RK2YR 3.081 -1.632

(1.896) (1.819)
ST -0.054 -0.340

(0.203) (0.285)
REG -0.191 0.067

(0.181) (0.212)
R-sq 0.214 0.433
N 8028 2008

Significance levels : * : 10% ** : 5% *** : 1%.
Bootstrap standard errors clustered by game in parentheses.

Table 9: Estimate/Actual Expected Final Rank Comparison

Prior Rk Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7
Estimates 1-6 6.62 6.72 9.70 6.31 6.92 9.79 8.79

7-12 12.86 11.78 13.90 10.93 13.20 14.71 12.45
13-18 16.74 18.53 18.24 16.90 16.82 18.45 19.24
19-25 23.37 24.33 23.27 23.02 22.86 24.46 25.44

Actuals (Raw) 1-6 10.21 10.08 8.57 6.85 6.77 6.56 7.29
7-12 15.90 17.06 16.72 16.41 16.57 16.73 18.21
13-18 23.37 24.25 25.01 25.57 24.66 25.51 23.33
19-25 28.83 27.41 26.35 25.49 24.84 24.21 20.85

Notes: Estimates calculated using ‘Bayesian priors’ (see body text for definition); Actuals calculated using 2006
empirical frequencies of final ranks; expected ranks based on mid-point ranks for each rank category (3.5, 9.5, 15.5, 22)

and 35 for unranked.
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Table 10: Estimation results: Aggregate Rankings

Wins Losses
A B C D

HOME 1.472*** 1.504** -1.499*** -1.757**
(0.422) (0.669) (0.543) (0.791)

SMARG -0.067*** -0.076*** 0.093 0.158*
(0.012) (0.018) (0.065) (0.085)

OPP25 -0.255 0.538 -0.575 -1.198
(0.764) (1.191) (1.139) (1.441)

SM25 0.103 0.070 -0.133** -0.166*
(0.077) (0.061) (0.063) (0.088)

TOP10 0.017 0.785 2.090 2.239
(0.621) (0.968) (1.622) (1.798)

TOP11-25 0.253 1.493 -3.716** -3.445*
(0.674) (1.042) (1.534) (1.886)

TOP26p -0.884 -1.517* -0.668 1.159
(0.642) (0.843) (1.242) (1.449)

Smoothed f() X X
R-sq 0.140 0.122 0.328 0.263
N 352 352 104 104

Significance levels : * : 10% ** : 5% *** : 1%.
Bootstrap standard errors in parentheses. “Smoothed f()” denotes use of smoothed empirical final rank frequencies for

prior distributions.
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